Varieties of Helmholtz Machine
نویسندگان
چکیده
The Helmholtz machine is a new unsupervised learning architecture that uses top-down connections to build probability density models of input and bottom-up connections to build inverses to those models. The wake-sleep learning algorithm for the machine involves just the purely local delta rule. This paper suggests a number of different varieties of Helmholtz machines, each with its own strengths and weaknesses, and relates them to cortical information processing. Copyright 1996 Elsevier Science Ltd.
منابع مشابه
A Coupled Helmholtz Machine for PCA
In this letter we present a coupled Helmholtz machine for principal component analysis (PCA), where sub-machines are related through sharing some latent variables and associated weights. Then, we present a wake-sleep PCA algorithm for training the coupled Helmholtz machine, showing that the algorithm iteratively determines principal eigenvectors of a data covariance matrix without any rotationa...
متن کاملImproved representations and hardware implementation of the Helmholtz Machine
Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic ANN architecture, the Helmholtz Machine, investigating its characteristics, with particular respect to its wake-sleep training algorithm, and ...
متن کاملUsing Stochastic Helmholtz Machine for Text Learning
We present an approach for text analysis, especially for topic words extraction and document classification, based on a probabilistic generative model. Generative models are useful since they can extract the underlying causal structure of data objects. For this model, a stochastic Helmholtz machine is used and it is fitted using the wake-sleep algorithm, a simple stochastic learning algorithm. ...
متن کاملPulse-stream binary stochastic hardware for neural computation : the Helmholtz Machine
................................................................................V DECLARATION OF ORIGINALITY ........................................... VII ACKNOWLEDGEMENTS........................................................... IX TABLE OF CONTENTS.............................................................. XI TABLE OF FIGURES.................................................................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 9 8 شماره
صفحات -
تاریخ انتشار 1996